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A B S T R A C T

Wrong way driving (WWD) has been a constant traffic safety problem in certain types of roads. Although these
crashes are not large in numbers, the outcomes are usually fatalities or severe injuries. Past studies on WWD
crashes used either descriptive statistics or logistic regression to determine the impact of key contributing fac-
tors. In conventional statistics, failure to control the impact of all contributing variables on the probability of
WWD crashes generates bias due to the rareness of these types of crashes. Distribution free methods, such as
multiple correspondence analysis (MCA), overcome this issue, as there is no need of prior assumptions. This
study used five years (2010–2014) of WWD crashes in Louisiana to determine the key associations between the
contribution factors by using MCA. The findings showed that MCA helps in presenting a proximity map of the
variable categories in a low dimensional plane. The outcomes of this study are sixteen significant clusters that
include variable categories like determined several key factors like different locality types, roadways at dark
with no lighting at night, roadways with no physical separations, roadways with higher posted speed, roadways
with inadequate signage and markings, and older drivers. This study contains safety recommendations on tar-
geted countermeasures to avoid different associated scenarios in WWD crashes. The findings will be helpful to
the authorities to implement appropriate countermeasures.

1. Introduction

Wrong way driving (WWD) crashes on different roadways are con-
sidered as constant traffic safety problems. Although wrong way cra-
shes are not large in numbers, the outcomes of these crashes tend to
involve disproportionally higher number of fatalities or serious injuries.
According to Pour-Rouholamin and Zhou (2016), “WWD crashes
happen when a driver, inadvertently or deliberately, drives against the
main direction of traffic flow on a controlled-access highway”. A study
conducted by Friebele et al. (1971) mentioned that “the wrong-way
driver, travelling head-on into an unsuspecting traffic stream, is simply
a time bomb ticking off the seconds toward a possible disaster”. Pour-
Rouholamin et al. (2014) found 1.34 fatalities per fatal WWD crashes in
the U.S. from 2004 to 2013, while for other crashes the fatalities per
fatal crash rate is 1.10 during the same time period. According to Na-
tional Highway Traffic Safety Administration (NHTSA) statistics,
around 350 people are killed each year nationwide due to WWD crashes
(NHTSA, 2013). In Louisiana, around 300 WWD crashes (0.2% of total
crashes) happened every year. Around 0.45% of total crashes in
Louisiana are fatal crashes, but for wrong way crashes this percentage is

higher (around 1.6% of the total WWD crashes). Thus, it is crucial to
identify key risk factors associated with WWD crashes.

The Federal Highway Administration (FHWA) Highway Safety
Improvement Program (HSIP) includes a project to monitor WWD
crashes and identify hot spots of WWD crashes. It includes a wrong-way
study warrant based on total crash and fatal crash rates. The National
Transportation Safety Board (NTSB) recommends that the FHWA de-
velop a HSIP policy memorandum for use by state department of
transportation agencies to establish wrong-way monitoring programs
(NTSB, 2012). The outcomes of the monitoring programs can help in
developing improved signage and marking as well as technology like
wrong way navigation alerts on vehicles. For an effective monitoring
program, determining key association factors in WWD crashes would be
particularly helpful.

One of the major tasks in highway safety analysis is the identifica-
tion of the key contributing factors for different types of crashes.
Multiple Correspondence Analysis (MCA) is a dimensionality reduction
method useful to describing the significance of co-occurrence of groups
of variables or variable categories from a high dimension dataset. This
method is also referred to as the pattern recognition method that treats
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arbitrary data sets as combination of points in a larger dimensional
space. It uniquely simplifies complex data into knowledge extraction in
a completely different way than parametric estimation does. In MCA
analysis, the objective is to investigate associations between multiple
variables, as opposed to the more traditional characterization of asso-
ciations between a set of predictor variables and a single response
variable of interest (i.e., number of crashes).

The study team used five years (2010–2014) of Louisiana WWD (for
the remainder of this paper Louisiana wrong way crashes, both driving
and cycling, will be referred as WWD crashes for consistency) crashes to
determine the relationship of the variables and their significance. The
objectives of this study are: (1) to identify the relative closeness of the
key association factors to determine meaningful co-occurrence, and (2)
to recommend countermeasures when appropriate. The findings of this
study could help authorities to determine effective and efficient crash
countermeasures.

2. Literature review

Although traffic safety research includes an extensive array of re-
search areas, the most prominent are- crash frequency analysis, and
crash severity analysis. Lord and Mannering (2010) provided a detailed
overview of the properties of crash-frequency data and associated
methodological alternatives and limitations for examining such data.
Savolainena et al. (2011) provided a similar assessment on crash-se-
verity analysis. Recently, Mannering and Bhat (2014) bridged and ex-
tended the previous studies of Lord and Mannering (2010) and
Savolainena et al. (2011) by overviewing both count data models and
crash severity models. Interested readers can consult these studies as
well as a hyperlinked webpage developed by Das (2016) for further
information. That webpage lists 592 research papers on statistical and
algorithmic methods as well as hyperlinks to all corresponding papers.

The literature review reveals a surge of research on WWD crashes
since 2014. Table 1 described the research efforts conducted on WWD
crashes starting from 1971. Most of the studies used freeway as the
main interest group. Few studies focused on all roadways or divided
roadways (Ponnaluri, 2016; Kemel, 2015). Many studies performed
descriptive statistics to describe the nature of the factors in WWD cra-
shes (Friebele et al., 1971; Copelan, 1989; Cooner et al., 2004; Braam,
2006; Scaramuzza and Cavegn, 2007; SWOV, 2009; Morena and Leix,
2012; Finley et al., 2014; Xing, 2014; Zhou et al., 2015; FDOT, 2015).
In many cases, simple descriptive statistics should not suffice to ex-
plaining the impact of the contributing factors. It is also important to
note that some of these studies focused more on operational con-
siderations than safety (Friebele et al., 1971; Copelan, 1989; Cooner
et al., 2004; Braam, 2006; Finley et al., 2014). Several authors explored
the analysis of crash outcomes and crash types using a modeling ap-
proach. Some studies simply used logistic regression models to differ-
entiate between WWD and non-WWD crashes (Kemel, 2015; Ponnaluri,
2016). As WWD crashes are very small in numbers compared to non-
WWD crashes, this small sample size problem is likely to significantly
influence the outcomes and statistical power of the models. Pour-
Rouholamin et al. (2014) used Firth’s penalized-likelihood logistic re-
gression to control the influence of all confounding variables on the
probability of WWD crashes while considering the rareness of the WWD
event. Pour-Rouholam and Zhou (2016) used generalized ordered lo-
gistic regression to perform crash severity analysis using WWD crashes.

The idea of MCA begins in 1970 with French Statistician Jean-Paul
Benźecri (Roux and Rouanet, 2010), though there are similarities with
Principal Component Analysis (PCA) and Factor Anaysis (FA), two well
documented multivariate statistical methods. PCA mainly deals with
numerical data, and MCA is a well-accustomed tool for multi-
dimensional categorical data.

MCA has been reinvented many times under different frameworks
while keeping the goals similar (De Leeuw, 1973; Hoffman and De
Leeuw, 1992). A limited number of studies has been conducted in

applying MCA in the transportation safety research. Hoffman and De
Leeuw (1992) interpreted MCA as multidimensional scaling method
and associated different vehicle models with crash severities. Fontaine
(1995) performed MCA on one year of pedestrian crash data to de-
termine the statistical proximity of the significant factors. This study
identified few distinctive groups as a basis for more in depth analysis.
Factor et al. (2010) applied MCA in determining the association be-
tween driver’s social characteristics and their involvements in crash
severities. This study exposed new facets in the social organization of
fatalities. Das and Sun (2015) used eight years (2004–2011) of pedes-
trian crash data in Louisiana to determine key associations between risk
factors. This study determined several significant groups of factors that
require deeper exploration in future. Xu et al. (2016) used quasi-indiced
exposure method to identify the key factors contributed to pedestrian
crashes in Las Vegas from 2004 to 2008. This study later used MCA to
determine the interaction between different factors. Das and Sun (2016)
applied MCA on eight years (2004–2011) of fatal run-of-road (ROR)
crashes in Louisiana to examine the degree of association between risk
factors. Das et al. (2017) recently applied MCA on the second Strategic
Highway Research Program’s (SHRP 2) Washington Roadway Inventory
Database (RID) to identify the key association factors for inclement
weather crashes. The finding revealed some specific factor groups that
require careful attention from the safety professionals.

Table 2 shows variables used in previous studies addressing wrong-
way driving crashes using different methods. These past studies will be
used to inform the exploratory analysis presented in the following
sections.

3. Theory of multiple correspondence analysis

MCA is an unsupervised learning algorithm. In MCA, one does not
need to distinguish between explanatory variables and the response
variable. It requires the construction of a matrix based on pairwise
cross-tabulation of each variable. For example, the dimension of the
final dataset of this study is: 1203 × 24. For a table of qualitative or
categorical variables with dimension 1203 × 24, MCA can be explained
by taking an individual record (in row), i [i = 1 to 1203], where 24
categorical variables (represented by 24 columns) have different sizes
of categories. MCA can generate the spatial distribution of the points by
different dimensions based on these 24 variables.

Let P be the number of variables (i.e., columns) and I is the number
of transactions (i.e., rows). This will generate a matrix of ‘I multiplied by
P’. If Lp is the number of categories for variable p, the total number of
categories for all variables is, = ∑ =

L Lp
P

p1 . It will generate another
matrix ‘I multiplied by L’. In this matrix, each of the variables will
contain several columns to show all of their possible categorical values.

The cloud of categories is considered as a weighted combination of J
points. Category j is represented by a point denoted by Cj with weight of
nj. For each of the variables, the sum of the weights of category points is
n. In this way, for the whole set J the sum is nP. The relative weight wj

for point Cj is wj = nj/(nP) = fj/P. The sum of the relative weights of
category points is 1/P, which makes the sum of the whole set as 1.
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The numerator of Eq. (4) is the number of individual records asso-
ciating with either j or j′ but not both. For two different variables, p and
p′, the denominator is the familiar “theoretical frequency” for the cell (j,
j′) of the × ′J Jp p two-way table.
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Fig. 1 shows an easy representation of the cloud generation for
combination of categories. In this figure, three variables are considered.
Variable A has 3 categories (A1, A2, A3), variable B has 4 categories (B1,
B2, B3, and B4), and variable C has 6 categories (C1, C2, C3, C4, C5, and
C6). The categories are plotted in the MCA plot representing their re-
lative proximity on the two dimensional space. The plot shows a dis-
tinct cloud (red ellipse) associated with A2, B1, C2, and C6. This cloud is
created based on the proximity of the coordinates of these 4 categories.

3.1. Limitations and comparison with other methods

MCA is a powerful tool to recognize patterns and associations in a
dataset with multiple categorical variables. In the context of crash
analysis, this approach focuses on the associations between the cov-
ariates of crashes rather than the associations between each covariate
with the frequency or the odds of crashes, which is the emphasis of
regression modeling tools. Rather than answering the question in

regression analysis “How strong is the association of variable X with the
frequency (or odds) of crashes, after accounting for other significant
associations?” MCA focuses on answering the questions “Given a set of
crashes that have occurred, how strongly group of variables do con-
centrate within this dataset?” The question is answered based on the
relationships observed in a plot of orthogonal principal axes, as shown
in Fig. 1. As with every other method based on cross-sectional data,
MCA can only find patterns or correlations that must be interpreted
carefully as statistical associations and avoiding unwarranted state-
ments of causation.

4. Data

4.1. Data collection

To achieve the research objectives, this study used state maintained
traffic crash database compiled from 2010 through 2014 in Louisiana.

Table 2
Significant variables used in past studies.

Variable Variable used in Studies

Driver
Age Cooner et al. (2004), Braam (2006), Scaramuzza and Cavegn (2007), Lathrop et al. (2010), Scaramuzza and Cavegn (2007), SWOV (2009),

Morena and Leix (2012), Finley et al. (2014), Xing (2014), Zhou et al. (2015), FDOT (2015), Ponnaluri (2016), Pour-Rouholamin et al.
(2014), Pour-Rouholamin and Zhou (2016)

Gender Cooner et al. (2004), Lathrop et al. (2010), Morena and Leix (2012), Finley et al. (2014), Ponnaluri (2016)
License state Pour-Rouholamin et al. (2014), Pour-Rouholamin and Zhou (2016), Kemel (2015)
Impairment Friebele et al. (1971), Copelan (1989), Braam (2006), Cooner et al. (2004), Scaramuzza and Cavegn (2007), SWOV (2009), Lathrop et al.

(2010), Morena and Leix (2012), Finley et al. (2014), Zhou et al. (2015), Pour-Rouholamin et al. (2014), Pour-Rouholamin and Zhou
(2016), FDOT (2015), Ponnaluri (2016)

Condition Ponnaluri (2016)
Severity Pour-Rouholamin and Zhou (2016)
Reason or contributing factor Caltrans (2015), Scaramuzza and Cavegn (2007)
Violation type Caltrans (2015), Scaramuzza and Cavegn (2007)

Vehicle
Vehicle age Kemel (2015)
Vehicle type Lathrop et al. (2010), Zhou et al. (2015), Kemel (2015)
Headlight Finley et al. (2014), FDOT (2015), Caltrans (2015)

Temporal
Season Braam (2006), Lathrop et al. (2010), Pour-Rouholamin et al. (2014), Pour-Rouholamin and Zhou (2016), FDOT (2015)
Day of the week Zhou et al. (2015), FDOT (2015)

Geometric/Environmental
Urban/Rural areas Copelan (1989), Braam (2006), Zhou et al. (2015), Ponnaluri (2016)
Roadway type FDOT (2015), Caltrans (2015)
Darkness Copelan (1989), Scaramuzza and Cavegn (2007), Lathrop et al. (2010), Morena and Leix (2012), Zhou et al. (2015), FDOT (2015),

Ponnaluri (2016)
Access control Simpson and Bruggeman (2015)
Posted speed Caltrans (2015), FDOT (2015), Finley et al. (2014), Xing (2014), Lathrop et al. (2010)
Roadway feature or countermeasure Simpson and Bruggeman (2015), FDOT (2015), Finley et al. (2014)
Locality Caltrans (2015), Cooner et al. (2004), FDOT (2015), Finley et al. (2014)
Weather Ponnaluri (2016), Finley et al. (2014), FDOT (2015), Simpson and Bruggeman (2015)

Traffic
Traffic volume Ponnaluri (2016), NTSB (2012)
Traffic control Simpson and Bruggeman (2015), FDOT (2015), Finley et al. (2014)

Crash
Collision Types Pour-Rouholamin and Zhou (2016), FDOT (2015),SWOV (2009)

Fig. 1. MCA plot different categories.

S. Das et al. Accident Analysis and Prevention 111 (2018) 43–55

46



The primary dataset was prepared by merging information from three
different databases (crash, roadway geometry, and vehicle). Altogether,
1873 possible WWD crashes were identified from the total 800,000
crashes from 2010 to 2014 in Louisiana. After performing an extensive
review on these crashes, 1203 crashes were finally confirmed as WWD
crashes. These crashes involved 1947 individuals. As the current re-
search focus was to identify pattern of association factors involved with
police reported at-fault drivers, the final dataset was prepared based on
1203 at-fault crash incidents. The police reported crash data has an
identifier (VEH_NUM) in determining at-fault drivers. Value of 1 in this
identifier (VEH_NUM) indicates at-fault drivers. The reporting police
office provided this number to the vehicle or person based on his in-
vestigation on the crash occurrence site. Fig. 2 shows the spatial dis-
tribution of the WWD crashes in Louisiana. It clearly shows that WWD
crashes mostly occur in populous cities and urban areas (highlighted by
red center with yellow surroundings).

After removing non-pertinent information, a more precise database
was prepared based on key contributing factors. The variable section
method used the research findings from the past studies, as shown in
Table 2.

4.2. Descriptive statistics

Table 3a and b shows the descriptive statistics of the final selected
variables. Heat maps used in these tables will help to visualize the re-
lative weightage of different categories.

4.2.1. Driver characteristics
In Louisiana WWD crashes, around 1.75% crashes are fatal in

nature. When compared with non-WWD crashes, this rate is around 3
times higher. This finding is supported by other studies. For example,
Pour-Rouholamin and Zhou (2016) found 1.34 fatalities per fatal WWD

crashes in the U.S. from 2004 to 2013, while for other crashes the
fatalities per fatal crash rate is 1.10 during the same time period. Driver
impairment is found significant (around 19.31%) in Louisiana WWD
crashes. Many studies concluded that driver impairment is significantly
associated with WWD crashes (Friebele et al., 1971; Copelan, 1989;
Braam, 2006; Cooner et al., 2004; Scaramuzza and Cavegn, 2007;
SWOV, 2009; Lathrop et al., 2010; Morena and Leix, 2012; Finley et al.,
2014; Zhou et al., 2015; Pour-Rouholamin et al., 2014; Pour-
Rouholamin and Zhou, 2016; FDOT, 2015; Ponnaluri, 2016). Younger
and older drivers are usually more prone towards WWD crashes.
Louisiana crash data showed similar trends like other studies showed
for younger drivers (Cooner et al., 2004; Braam, 2006; Scaramuzza and
Cavegn, 2007; SWOV, 2009; Morena and Leix, 2012; Finley et al., 2014;
Xing, 2014; Zhou et al., 2015; FDOT, 2015; Ponnaluri, 2016) and older
drivers (Braam, 2006; Scaramuzza and Cavegn, 2007; SWOV, 2009;
Lathrop et al., 2010; Morena and Leix, 2012; Xing, 2014; Zhou et al.,
2015; Pour-Rouholamin et al., 2014; Pour-Rouholamin and Zhou, 2016;
Ponnaluri, 2016). Distracted drivers showed higher trends in WWD
crashes in Louisiana. Pour-Rouholamin and Zhou (2016) also associated
inattention in older ages with higher number of WWD crashes. Table 1
also shows that male drivers were nearly twice in numbers when
compared with female drivers. Similar findings are found in other
studies (Cooner et al., 2004; Lathrop et al., 2010; Morena and Leix,
2012; Finley et al., 2014; Ponnaluri, 2016). Driver error (driver con-
dition and driver violation) contributed significantly in WWD crashes.
Similar results were found in Caltrans (2015) and Scaramuzza and
Cavegn (2007). Driver’s license state plays a key role in WWD crashes.
Non local drivers usually end in WWD crashes due to the non-famil-
iarity of the surroundings. In non-WWD crashes, around 18% of the
crashes involved with out-of-state licensed drivers. On the other hand,
this percentage is nearly double (31.42%) for WWD crashes. This
finding is also in line with other studies (Pour-Rouholamin et al., 2014;

Fig. 2. WWD Crashes in Louisiana.
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Table 3
Descriptive statistics.

a

Attribute Frequency % Attribute Frequency %

Driver Severity Reason
Fatal 21 1.75% Driver Violation 599 49.79%
Severe 34 2.83% Driver Condition 236 19.62%
Moderate 148 12.30% Normal Movement 92 7.65%
Complaint 303 25.19% Vehicle Condition/Avoid things 48 3.99%
No Injury 697 57.94% Other 228 18.95%
Driver Impairment Vehicle Headlight
Yes 260 21.61% Headlights On 516 42.89%
No 694 57.69% Headlights Off 325 27.02%
Not Recorded 249 20.70% Daytime Running Lights 44 3.66%
Driver Age Other 318 26.43%
15–24 229 19.04% Vehicle Type
25–34 272 22.61% Passenger Car 587 48.79%
35–44 179 14.88% Bus/Truck 284 23.61%
45–54 132 10.97% Suv/Van 243 20.20%
55–64 96 7.98% Motorcycle 21 1.75%
65–74 54 4.49% Other 68 5.65%
74 plus 241 20.03% Vehicle Year
Driver Condition 1996–2005 554 46.05%
Inattentive/Distracted 422 35.08% 2005–2015 393 32.67%
Normal 224 18.62% Older than 20 years 103 8.56%
Impaired 234 19.45% Not Recorded 153 12.72%
Fatigue/Illness 44 3.66% Urban-Rural Type
Other 279 23.19% Urban 539 44.80%
Driver Gender Rural 96 7.98%
Male 667 55.44% Not Recorded 568 47.22%
Female 375 31.17% Locality
Not Recorded 161 13.38% Business, Mixed Residential 401 33.33%
Driver Violation Business Continuous 317 26.35%
Improper Driving 418 34.75% Residential District 226 18.79%
Fail to Control 211 17.54% Open Country 111 9.23%
Driver Condition 132 10.97% Residential Scattered 67 5.57%
Following Too Closely 11 0.91% Manufacturing Or Industrial 44 3.66%
No Violations 27 2.24% Other 37 3.08%
Other 404 33.58%
Driver License State
Louisiana 825 68.58%
Other 378 31.42%

b

Attribute Frequency % Attribute Frequency %

Road Type Lighting Condition
Two-Way Road With No Physical Separation 416 34.58% Daylight 599 49.79%
Two-Way Road With A Physical Separation 372 30.92% Dark – Continuous Street Light 377 31.34%
One-Way Road 338 28.10% Dark – No Street Lights 123 10.22%
Two-Way Road With A Physical Barrier 65 5.40% Dark – Street Light At Intersection Only 65 5.40%
Other 12 1.00% Dawn/Dusk 24 2.00%
Posted Speed Other 15 1.25%
20 mph or less 177 14.71% Collision Type
21–30 mph 320 26.60% Head-On 293 24.36%
31–40 mph 284 23.61% Right Angle 206 17.12%
41–50 mph 190 15.79% Sideswipe 210 17.46%
51–60 mph 142 11.80% Non-Collision With Motor Vehicle 161 13.38%
61–70 mph 90 7.48% Left Turn/Right Turn 90 7.48%
Countermeasure Rear End 67 5.57%
White Dashed Line 337 28.01% Other 176 14.63%
No Control 203 16.87% Day of the Week
Yellow No Passing Line 118 9.81% Weekday 829 68.91%
Sign 88 7.32% Weekend 374 31.09%
Signal 82 6.82% Season
Yellow Dashed Line 62 5.15% Fall 277 23.03%
Other 313 26.02% Spring 176 14.63%
Access Control Summer 307 25.52%
Full Control 135 11.22% Winter 443 36.82%
No Control 941 78.22% Weather
Partial Control 113 9.39% Clear 943 78.39%
Other 14 1.16% Cloudy 138 11.47%
Traffic Control Rain 91 7.56%
Controls Functioning 936 77.81% Fog/Smoke 11 0.91%

(continued on next page)
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Pour-Rouholamin and Zhou, 2016; Kemel, 2015).

4.2.2. Vehicle characteristics
Roadway sign and markings are keenly associated with vehicle

headlights at night. State DOT WWD studies in Texas and California
included this factor (Finley et al., 2014; FDOT, 2015; Caltrans, 2015).
In Louisiana, vehicles with headlights off contributed largely in WWD
crashes. Large vehicles (Bus/Truck, Suv/Van) contributed nearly 44%
of WWD crashes in Louisiana. Other studies also showed similar trends
(Lathrop et al., 2010; Zhou et al., 2015; Kemel, 2015). Kemel (2015)
showed that vehicles more than 15 years old (respectively less than 5
years old) were over-represented among WWD crashes. Louisiana WWD
crashes showed similar trends. Vehicles older than 10 years showed the
higher (55%) involvement in WWD crashes.

4.2.3. Geometric/Environmental properties
Urban roadways contained the larger number of WWD crashes in

Louisiana. Other studies showed similar result (Copelan, 1989; Braam,
2006; Zhou et al., 2015; Ponnaluri, 2016). Absence of adequate lighting
at night is a key contributing factor in WWD crashes. Other studies
supported this trend (Copelan, 1989; Scaramuzza and Cavegn, 2007;
Lathrop et al., 2010; Morena and Leix, 2012; Zhou et al., 2015; FDOT,
2015; Ponnaluri, 2016). Two way roads were associated with higher
crashes in Louisiana study. This finding is not in line with the findings
of other studies probably because most of past research focused on
freeway crashes. Around 28% of Louisiana WWD crashes happened on
one way roadways. The majority of these one-way crashes were on exit
ramp. Few studies associated impact of posted speed on WWD crashes
(Caltrans, 2015; FDOT, 2015; Finley et al., 2014; Xing, 2014; Lathrop
et al., 2010). In the Louisiana study, higher percentage of crashes is
seen in lower speed roadways. Access control is a less studied variable
in WWD crashes. Roadways with no access control were associated with
78% of WWD crashes. Very few studies (Simpson and Bruggeman,
2015; FDOT, 2015; Finley et al., 2014) considered presence of coun-
termeasure as a significant factor. Finley et al. (2014) found that higher
number of crashes happened on roadways either with white lines or
with no controls. This study also used locality characteristics as a factor.
Few studies (Simpson and Bruggeman, 2015; FDOT, 2015; Finley et al.,
2014) considered such characteristics as a significant factor. Finley
et al. (2014) found that locality with business entities was more prone
to WWD crashes. Additionally, it was found that impact of inclement
weather is significant for WWD crashes. Similar findings are mentioned
in other studies (Ponnaluri, 2016; Finley et al., 2014; FDOT, 2015;
Simpson and Bruggeman, 2015).

4.2.4. Traffic characteristics
Traffic control feature in Louisiana indicates the status of the traffic

control devices in the surrounding roadways. Table 2 shows that higher
number of WWD crashes occurred on low volume roadways.

4.2.5. Crash characteristics
Head-on collisions were higher in number in WWD crashes. Other

studies found similar findings (Pour-Rouholamin and Zhou, 2016;
FDOT, 2015; SWOV, 2009).

5. Analysis

In MCA, the approach is to analyze the rows and columns of a da-
taset while treating them as high-dimension geometry elements. The
target is to show the co-occurrence of the categories in a lower di-
mensional space where proximity in the space potentially indicates
meaningful associations among the categories. Graphical representa-
tions in MCA help to interpret data in a convenient way as they effec-
tively summarize large, complex datasets by simplifying the structure of
the associations between variable categories with a relatively simple
view of the data (Greenacre and Blasius, 2006). A larger distance in-
dicates a distant association. If the distance for a particular category is
very far away from the centroid, it indicates that such category is dif-
ferent from the average profile.

Each of the categories is independent in principal and a co-occur-
rence based on weight proximity (by associating certain categories to-
gether in a cloud) tends to form a complete picture of certain scenarios.
A percentage distribution for a single category conveys little meaning in
many cases, but when combined with other categories due to the
proximity in the space, a variety of implications can be potentially in-
terpreted.

Table 4 shows the percentages of variance explained by the top 10
dimensions. The first principal axis explained 6.43% of the principal
inertia, the second principal axis explained 5.32%. These percentages
are calculated based on the eigenvalue (a value in between 0 and 1).
Dimension with larger variance has a higher eigen-value magnitude.
The first two dimensions explained 11.75% of variance and none of the
remaining major dimensions explained more than 3.17%. As this per-
centage indicates a lower representation of the data, this study used
another method (joint correspondence analysis, JCA) to identify the
overall inertia of the first two planes. This method identifies the cov-
erage around 78%. The comparison between MCA and JCA shows si-
milar positions of the attributes up to the MCA axis limits. It indicates
the MCA used in this study can identify significant associations even

Table 3 (continued)

b

Attribute Frequency % Attribute Frequency %

No Controls 207 17.21% Other 20 1.66%
Other 60 4.99%
Traffic Volume (vpd*)
Less than 20,000 265 22.03%
20,000–40,000 197 16.38%
Over 40,000 173 14.38%
Not Recorded 568 47.22%

Note: * vpd = Vehicle per day.

Table 4
Percent variance explained in top 10 dimensions.

Dimensions Eigen Value % of Variance Cumulative% of
Variance

Dimension 1 (Dim 1) 0.238 6.428 6.428
Dimension 2 (Dim 2) 0.197 5.321 11.749
Dimension 3 (Dim 3) 0.117 3.169 14.918
Dimension 4 (Dim 4) 0.105 2.845 17.763
Dimension 5 (Dim 5) 0.091 2.445 20.207
Dimension 6 (Dim 6) 0.083 2.239 22.446
Dimension 7 (Dim 7) 0.079 2.118 24.564
Dimension 8 (Dim 8) 0.069 1.858 26.421
Dimension 9 (Dim 9) 0.066 1.779 28.200
Dimension 10 (Dim 10) 0.065 1.761 29.961
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maintaining lower inertia by the two major planes.
Table 5 lists the significance of each of the variables in both di-

mensions. The higher R2 values indicates higher association between
the dimension and the variable. The most dominant variables in di-
mension 1 are: driver impairment, driver condition, reason, posted
speed, and driver gender. For dimension 2, the most dominant variables
are: driver condition, driver impairment, driver gender, reason, and
driver age. The values from Table 4 indicate that dimension 1 and 2
both were governed by driver related variables. Posted speed is found
as a top contributing variable in dimension 1.

Fig. 3 reveals the significance of the contributing categories. For
both dimensions, driver related categories are most dominant. The
other dominant categories are: vehicle lighting categories, street
lighting categories, speed categories, locality categories, urban-rural
categories, and countermeasure categories.

To verify the outcomes of MCA analysis, bootstrap resampling
techniques were used to produce confidence regions on the first plane.
In practice, around 100 replications were done to produce ellipses
having similar shapes and sizes with similar categories. The bootstrap
replication scheme shows 81.32% similarity of the clusters as shown in
Fig. 4.

6. Results and discussion

It is important to note that the contribution of the variables depends
on its number of categories, whereas the contribution of a category
depends on the number of incidents coded under its categories. Fig. 4
shows the proximity distribution of all listed categories. Category co-
ordinates are the weighted average of the individual incidents occur-
ring in that category. Most of the variables show certain level of dif-
ferences (exceptions are seen in driver gender and season). This study
used open-source R software package ‘FactoMineR’ to perform MCA (R
Core Team, 2016; Husson et al., 2014). This package also produces
related graphics from the analysis. The research team used two other
visualization packages ‘ggplot2’ and ‘ggrepel’ to develop MCA plots
(Wickham, 2009; Slowikowski, 2016). The flexibility of functions in
these two packages makes the graphics tidier. The three clusters shown
in Fig. 4 are separately shown in three other figures (Fig. 5a–c) based on

their coordinate values.
MCA is a powerful tool to distinct non-trivial categories in the MCA

plot (shown in rectangles with dotted lines). One non-trivial cloud in
Fig. 4 is shown in ellipses with dotted lines. Clouds 1–16 are shown in
ellipses with solid lines. These are group of categories in the dataset
that are associated in direct proportion to their relative distance in the
plane.

In order to facilitate the interpretation of the clouds, two additional
patterns of interest have been coded in Fig. 4: Triangular markers in-
dicating the severity of crashes (most severe in red, least severe in
green) and pentagonal markers indicating impaired drivers (blue) or
non-impaired drivers (purple). From these two patters it is clear that
dimension 1 is an inverse indicator of severity and driver impairment
(over this dimension’s negative range), while dimension 2 is a direct
indicator of these variables (severity over its positive range, and driver
impairment over both its positive and negative range). Therefore, a
cloud of categories with low value in dimension 1 and a high in di-
mension 2 tends to generally associate with higher severity and pre-
sence of impaired drivers (such as clouds 1 and 2). Additionally, both
dimensions in their positive extremes are direct indicators of crashes
with unspecified characteristics in driver condition, driver impairment,
gender, reason, traffic control, access control, vehicle year, road type,
lighting, and weather (per the categories in cloud 4). Finally, it should
be mentioned that the dimensions are associated with each and every
category, so similar patterns as those described above can be inferred
for each category. However, severity and driver impairment are fea-
tures of great interest to this research and therefore will help to inter-
pret the associations found in the first plane.

Finally, the plane associations are in a continuum rather than a
discrete space. Even though clouds of categories can be identified by
their proximity, proximity between clouds is also meaningful in the
plane. Given this general pattern, the following are further interpreta-
tions of the additional clusters recognized in the first plane.

6.1. Cloud 1 (driver severity = fatal, posted speed = 60–70 mph,
locality = open country)

The first cloud is associated with three significant factors. Many
studies showed that higher posted speed is a significant factor in traffic
fatalities (for example, Cooner et al., 2004; Finley et al., 2014). Inter-
estingly, this cloud also specifies particular locality characteristics
closely associating ‘open country’. This association suggests a group of
unintentional WWD crashes in rural, isolated conditions. Drivers ap-
proaching a freeway entry point in open country are more likely to
make a wrong decision and enter the facility the wrong way. Once a
wrong-way entry has occurred, it is more likely that a fatality would
occur at locations with higher posted speeds. The location of this cloud
also indicates a closer association with driver impairment than with
not-impaired drivers, an association that has also been studied before
(Finley et al., 2014). Countermeasures like reflective and raised wrong-
way pavement arrow markers or proper signage would be helpful in
mitigating much crashes.

6.2. Cloud 2 (lighting = dark with no street light, access control = full
control, road type = two way road with physical barrier,
urban_rural = rural)

The second cloud is associated with four factors. It suggests that full-
controlled rural two lane roadways with a physical separation are likely
to confluence in recorded WWD crashes. The potential explanation,
again in the context of unintentional WW entry, is that once such WW
entry has occurred on full-access controlled locations with physical
separation in no-lit condition, the chances of a WW crash occurrence
are increased, compared to locations with other access control features
and without physical barriers in well-lit condition. This cloud is also
associated with rural locations, which resonates with the first cloud

Table 5
Significance of Key Variables on the First Plane.

Dimension 1 Dimension 2

R2 p-value R2 p-value

Dr_Impairment 0.535 < 0.001 Dr_Condition 0.631 < 0.001
Dr_Condition 0.531 < 0.001 Dr_Impairment 0.589 < 0.001
Reason 0.444 < 0.001 Dr_Gender 0.375 < 0.001
Posted_Speed 0.397 < 0.001 Reason 0.383 < 0.001
Dr_Gender 0.346 < 0.001 Dr_Age 0.318 < 0.001
Dr_Age 0.342 < 0.001 Lighting 0.308 < 0.001
Urban_Rural 0.314 < 0.001 Veh_Headlight 0.213 < 0.001
Traffic_Volume 0.290 < 0.001 Posted_Speed 0.212 < 0.001
Veh_Headlight 0.248 < 0.001 Locality 0.192 < 0.001
Locality 0.252 < 0.001 Collision 0.189 < 0.001
Veh_Yr 0.241 < 0.001 Dr_Lic_State 0.163 < 0.001
Countermeasure 0.206 < 0.001 Access_Control 0.158 < 0.001
Dr_Lic_State 0.173 < 0.001 Veh_Type 0.118 < 0.001
Traffic_Control 0.151 < 0.001 Urban_Rural 0.099 < 0.001
Dr_Violation 0.159 < 0.001 Traffic_Volume 0.088 < 0.001
Road_Type 0.153 < 0.001 Road_Type 0.087 < 0.001
Lighting 0.148 < 0.001 Dr_Violation 0.072 < 0.001
Access_Control 0.113 < 0.001 Veh_Yr 0.066 < 0.001
Veh_Type 0.108 < 0.001 Traffic_Control 0.052 < 0.001
Dr_Severity 0.089 < 0.001 Dr_Severity 0.055 < 0.001
Collision 0.090 < 0.001 Weather 0.050 < 0.001
Weather 0.066 < 0.001 Countermeasure 0.050 < 0.001
Day 0.006 0.01 Day 0.037 < 0.001
Season 0.006 0.03 Season 0.004 < 0.001
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described earlier. It should be kept in mind that, by its location in the
plane, this cloud of conditions tends also to associate with crashes of
high severity and with driver impairment.

Finally, the condition “no street light” is in the rough vicinity of
both Cloud 1 and Cloud 2 in Fig. 4. Naturally, no street light relates to
dark condition, but it is interesting that this analysis found dark con-
ditions to closely correlate with fatal crashes, with driver impairment,
rural environments, and full control and divided facilities. Counter-
measures like adequate lighting at night in these sites would be bene-
ficial.

6.3. Cloud 3 (traffic volume = over 40,000, driver severity = severe,
countermeasure = white dashed line)

The second cloud is associated with three factors. It indicates that
full-controlled rural two lane roadways with a physical separation are
prone to WWD crashes. This cloud indicates that white dashed line is
not enough to give visual guidance on avoiding wrong way driving.
Proper wrong way sign and reflective and raised wrong-way pavement
arrow markers would help in decreasing such crashes.

6.4. Cloud 4 (driver age = 74 plus, driver condition = other,
reason = other, traffic control = other, vehicle type = other, driver
impairment = not recorded)

1. This cloud suggests that crashes involving drivers older than 75
years of age tend to differentiate from other contributing factors
(i.e., no driver impairment, vehicle types not classified, and reason,
traffic control and driver condition not typified either). However, its

distance to impaired or not impaired driver condition is roughly
equal, thus indicating no clear association. The relationship to se-
verity is not as strong as crashes with categories in cloud 1 and 2 and
the three clusters in Fig. 5. However, by their position in the plot,
these crashes tend to associate with low to moderate severity. Low
mount oversized wrong way signs and oversized pavement arrows
are particularly helpful in assisting older drivers to avoid WWD.

6.5. Cloud 5 (lighting = dark with intersection lighting, collision = head-
on, road type = two way road with a physical separation)

This cloud suggests that head-on collisions may occur if a vehicle
enters into a two way road with physical separation wrongfully in dark
with intersection lighting. This scenario is possible due to lack of cri-
tical wrong way signage and signalization. This type of crash is also
associated with moderate severity and more likely to involve impaired
drivers than not. Geometric improvement and in-pavement warning
lights would help mitigating these crashes.

6.6. Cloud 6 (urban_rural = urban, traffic volume = 40,000 or less,
locality = residential, scattered, headlight = headlight on)

WWD crashes mostly happen on urban roadways due to their
complex environment. This cloud indicates that WWD crashes mostly
occur on medium volume roadway in urban residential areas. This
cloud also includes that the vehicle headlights are turned on in these
crashes, a circumstance that potentially indicate the dark lighting
condition WWD crashes associate with a lack of other critical signage
and signalization. Similar to the above type, this type of crash is also

Fig. 3. Significance of top fifteen categories in
Dimension 1 and Dimension 2.
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associated with moderate severity and more likely to involve impaired
drivers than not. Traffic calming countermeasures would be beneficial
in avoiding these crashes.

6.7. Cloud 7 (driver severity = moderate, vehicle = older than 20 years,
posted speed = 41–50 mph, driver gender = male)

This particular cloud indicates male drivers’ involvement in WWD
crashes while using older vehicles. These WWD crashes occurred
mainly in roadways with moderate posted speed and these crashes in-
volved moderate driver injuries. Driver education and strict state po-
licies on vehicle maintenance would be helpful.

Other significant clouds (Cloud 8–Cloud 16) indicate various key
association groups. This study identifies several countermeasures to
mitigate such scenarios:

Cloud 8: This cloud indicates that large vehicle WWD crashes mostly
occurred in manufacturing or industrial locations during dawn or dusk.
The main feature of the roadway is that the locations were on roadways
with yellow dashed lines. The temporal factor (Season = Fall/Winter)
may indicate higher proportion of large truck movements compared to
other seasons. Improvement of roadway signage and geometric features
are needed to minimize large vehicle WWD crashes in the industrial
areas.

Cloud 9: This cloud indicates that weekend collisions under dark
with continuous lighting are mostly associated with sideswipe WWD
crashes. The confluence of this set of factors suggests, perhaps, that
sideswipe WW crashes seem to associate with moderately limited visi-
bility and reduced traffic (i.e., weekend). Additionally, WWD crashes at
night during weekend indicate possible association with intoxication or
violation (non-identified violation is in the proximity of this cloud).
Targeted enforcement and regulations would be helpful in reducing
such crashes.

Cloud 10: Car and SUV/Vans are more likely to be involved in

crashes during weekday. The crashes happened on locations with no
passing lane. An interpretation of this association is that the drivers
were involved in improper passing related crashes. It should be noted
that compared to Fig. 5a, the scales in Fig. 5b and c are significantly
differ, and thus, even though clouds 10 through 16 can be seen as se-
parate groups of associated factors, each of these groups is more similar
to its adjacent clouds than the average distance between categories in
other clouds. Therefore, this study considers that when interpreting
these clouds, it should be kept in mind that these clouds are subsets of
bigger clusters, as shown in Fig. 4. However, the reduction of the scale
may also result in individual clouds whose interpretation may not be
practical, perhaps due to just randomness within the clusters. Adapta-
tion of advanced warning systems (both infrastructure and in-vehicle)
and cautionary signs/signals would be beneficial to reduced = these
crashes.

Cloud 11: Locality specific WWD crashes require special attentions.
Countermeasures like signage improvement, reflective raised pavement
marker installation, and geometric feature improvement can be
adopted to minimize these crashes.

Cloud 12: Motorcycle drivers are more likely to be involved in WWD
crashes on business locations. This pattern associates with two harmful
conditions: cloudy weather and no access control. However, severities
of these crashes tend to be the lowest and slightly more likely to involve
non-impaired drivers, rather than involve impaired drivers. Similar to
the above category, these types of crashes could be intentional viola-
tions. In busy constraint environments, motorcycles may decide to
travel in the opposite lane for shorter distances to gain on or avoid
queues. Law enforcement presence may help alleviate these situations.

Cloud 13: Roadways with no controls are always more likely to be
contributing in WWD crashes. This cloud associates with two major
roadway types: one-way roadways or two-way roadways with no phy-
sical separation.

Cloud 14: It indicates that local older drivers (apparently involved in

Fig. 4. Principal MCA plot for the variable categories.
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no violations) are more likely to be involved in WWD crashes. Better
education and policy guidance are beneficial in minimizing young
driver related WWD crashes. Oversized ‘do not enter’ and ‘wrong way’
signs or lower mounter signs can help older drivers in avoiding WWD

crashes.
Cloud 15: At signalized intersections, young female drivers were

associated with driver violations (following too closely). Maneuvering
through intersections requires better attention on the part of the

Fig. 5. MCA Plot for Cluster 1, 2, and 3.

S. Das et al. Accident Analysis and Prevention 111 (2018) 43–55

53



drivers. Except for the gender specificity, this finding is consistent with
previous research indicating an increased risk for teens of involvement
in any type of crashes.

Cloud 16: This cloud indicates that distracted drivers (but not im-
paired) tended to be involved in WW crashes when their vehicle
headlights were turned off. To decrease distraction related WWD cra-
shes, better education, training, and safety campaigns are necessary.

7. Recommended countermeasures, policy implications, and
study limitations

This study applied MCA on five years of WWD crashes in Louisiana.
Variable selection was performed by the systemic literature review of
past studies. As WWD crashes were associated with significant numbers
of categorical factors, MCA is considered an extremely valuable tool to
explore the association between these large numbers of variable cate-
gories. MCA helps in presenting proximity map of the variable cate-
gories in a low dimensional plane by revealing the main features from a
multi-dimensional dataset. The key groups of the confluence of factors
in WWD crashes found in this research (with addition of related
countermeasures and policy implications) are discussed below:

• Locations with higher posted speed are associated with a specific
locality condition where an open country condition exists. These
types of crashes have a clear tendency to be most severe as well.
These types of crashes should be the focus of safety programs in-
tended to reduce WWD crashes. Possible countermeasures include
improved signage and traffic control devices at such locations.
Recent research has shown that WWD detection systems show pro-
mise in deterring drivers at entry points in freeway ramps (see
Finley et al., 2014). From a policy perspective, it is desirable that
regional or local agencies at risk move to implement pilot projects
using technology alternatives and advanced signing to deter these
most severity WWD instances.

• Rural areas with no lighting at night at full access control, divided
facilities are associated with higher number of WWD crashes. These
crashes tend to also have involvement of impaired drivers, rather
than not. Similar to the recommendations above, possible counter-
measures include improved signage and adequate lighting at such
locations. Policymakers can use this finding in prioritizing initiatives
or projects to reduce WWD crashes, such as pilot projects with WWD
detection technology.

• Roadways with no control and roadways with no physical separa-
tion are more likely to be associated with WWD crashes. Adequate
traffic control devices and geometric improvements can help reduce
these incidents. However, expensive countermeasures such as phy-
sical separations require long term planning and justifications for
the policymakers to proceed. However, in the case of no control, this
finding may bear important implications for current policies in the
U.S., where the Manual on Uniform Traffic Control Devices (FHWA,
2009) is the reference document for most control countermeasures.
According to this document, no traffic control is recommended
within a median opening at locations with medians narrower than
30 ft (9.14 m), but the finding of this study suggest that the use of
traffic control countermeasures, such as Stop, Yield, or ‘Do Not
Enter’ signs, may prove cost effective ways to prevent WWD in-
stances at certain locations.

• Types of locality play a dominant role in WWD crashes. Open
country, urban residential areas, and industrial zones show different
types of key associations. For some locations, WWD crashes are
more likely to be intentional. Targeted law enforcement at problem
areas should help discourage intentional violations, and traffic
calming countermeasures may help alleviate the severity of these
crashes. This finding might have important policy implications. In
the U.S., the guidelines in the MUTCD for WWD countermeasures do
not distinguish between high speed and low speed facilities, nor

between rural vs. urban environments. This research is in agreement
with previous work that crash risk factors and specific character-
istics vary by locality and might require differentiated guidelines for
practitioners when selecting appropriate countermeasures.

• This study showed that countermeasures like white dashed edge
line, yellow dashed line, and yellow no passing zone are not ade-
quate enough in reducing WWD crashes. Innovative signing and
pavement marking (low mounted wrong way sign, reflective wrong
way arrows, pavement arrows, and flashing wrong way indicators)
can be considered as targeted countermeasures.

• Crashes involving drivers older than 75 years of age seem to appear
as a meaningful factor by itself, without a strong relationship with
severity (though more likely to result in less severe crashes). Young
female drivers involved in WWD crashes were associated with traffic
violations. Possible countermeasures include low mounted visible
signs and indicators for older drivers, and targeted enforcement for
younger drivers. The knowledge gained from this study will help the
policy makers in advocating WWD crash awareness to appropriate
populations under risk of WWD involvement.

It is important to note that the groups of confluence factors are
developed based on the first plane, which represents 12% variance of
the complete database. However, the JCA method, which explains 78%
variance of the data, has similar groups of confluence factors. Thus, the
MCA exploration, as articulated in this WWD study, hopes to serve as a
guide to safety professionals, transportation planners, and policy ma-
kers. The findings from this study will help the policy makers to in-
troduce or develop new standards to deploy appropriate counter-
measures based on the need from region or zone specific WWD safety
facts.

A graphical display like MCA plot is useful for the general audience
as it shows complex associations involving many factors into a lower
dimensional space. One limitation of this study is that it fails to include
any significance test for the cloud groups. It is important to note that
other cluster techniques like K-means clustering and Principal
Component Analysis (PCA) have similar strengths and disadvantages
like as the MCA. Future research can improve the findings of MCA by
connecting it statistical models like log-linear and risk models. Another
limitation is that the study findings are based on the first plane that
explained only 12% of the data inertia. The inclusion of more dimen-
sions can potentially increase the number of association patterns un-
derlying the dataset. This study compared the results by using joint
correspondence analysis (JCA), which indicates high percentage (78%)
of explained variance. Exploration on JCA could be considered as a
future research scope. The conventional MCA was improved by using
Kohonen algorithm and different variants of self-organizing map (SOM)
algorithms were developed for better predication (Du and Swamy,
2014). Future research can consider using SOM to develop predictive
models for WWD crashes.

8. Conclusions

Many research efforts on conventional crash data have been con-
ducted to understand better the factors that influence the frequency and
severity of WWD crashes and to provide more effective safety-related
countermeasures. However, the number of WWD crashes is still at an
unacceptable level, which is evident by the recent statistics. It shows
that, in addition to current efforts, research needs to be conducted with
additional resources and in newer directions. Moreover, the conven-
tional way of associating effect of a single factor on the response vari-
able is not sufficient to characterize the complex nature of a crash oc-
currence. The findings from this study demonstrate that MCA would be
a viable tool in analyzing complex categorical data in search of
meaningful associations between categorical factors. Conventional
statistical modeling requires supervised data (clear definition of ex-
planatory and response variables) and prior assumptions. Therefore,
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these models are more appropriate at a later stage of analysis, when the
focus is on answering specific and clearly delimited questions. MCA, a
distribution free method, does not require any assumptions and it can
work on unsupervised data, and is most valuable when the dataset is
approached without a specific hypothesis or set of hypotheses in mind.
In MCA, the target is to show the co-occurrence of the categories in a
low dimensional space where proximity in the space indicates the si-
milarity of the categories. This method helps in understanding diverse
variable categories and produces visual results from the key associa-
tions.

As the WWD crash dataset has limited number of cases, removing
entries with noise would make a small dataset smaller. Applying MCA
offers the advantage of removing noise (by representing the data in low
dimensional spaces) without reducing the dataset. This feature helps to
describe the significant associations between the categories of the
complex dataset like WWD crashes. Prioritization of certain key asso-
ciation groups as well as target countermeasures listed in this study
would help authorities in reducing WWD crashes.
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